Communications to the Editor

3'-DEOXYTALOPIERICIDIN A₁, A NOVEL ANALOG OF ANTITUMOR ANTIBIOTICS FROM OLIGOTROPH

Sir:

In the course of a screening program for new antitumor substances, we isolated a novel glycopiericidin antibiotic from the mycelial extract of facultative oligotroph^{1,2)} strain DO-100. Here we report the fermentation, purification, structure determination and antitumor activity of the DO-100 product.

DO-100, probably a *Streptomyces* sp., was isolated from a soil sample collected in Gotemba city, Shizuoka, Japan. For the isolation, agar plates containing 1% Eugon medium (Difco Labs, Detroit, MI, U.S.A.) were used. Colonies were inoculated into 500-ml Erlenmeyer flasks containing 100 ml of normal concentration of Eugon medium, pH 7.2. Sixty inoculated flasks were incubated at 28°C on a rotary shaker at 205 rpm, for 2 days. The antitumor activity was found mainly in the mycelial cake of

the culture broth. Fifteen mg of the active substance were finally obtained from 150 g of the mycelial cake through the purification procedure shown in Fig. 1.

The substance was a pale yellow viscous oil. It was soluble in many organic solvents tested and insoluble in water. It changed to a reddish purple with treatment with H₂SO₄, and had two major UV absorption peaks at 235 and 275 nm. FAB-MS analysis showed that the MW was 561 dalton. ¹H NMR and ¹³C NMR spectra revealed that the substance contained a piericidin A_1 sub-structure³⁾ including a sugar moiety. The sugar was confirmed to be a methylhexose by 1D homonuclear Hartmann-Hahn experiments, and to be linked at the C-3' position of piericidin A_1 since the signal of the C-3' carbon in the ¹³C NMR spectrum shifted down-field (1.5 ppm) as compared with that of piericidin $A_1^{3,4}$. Fig. 2 shows proton coordination of the sugar as determined by difference-NOE experiments. These data reveal that the biologically active substance is a 3'-deoxytalopiericidin A1 (DTPA, Fig. 3), which is a new series of glyco-

Fig. 1. Isolation procedure of a DO-100 product.						
Culture broth						
	centrifuged at 3,000 rpm for 20 minutes					
[
Supernatant		Mycelial cake (wet weight 150g)				
		extracted with 500 ml of MeOH at 5 °C for 2 days				
		with an Advantec No. 2 filtered				
[· · · · · · · · · · · · · · · · · · ·						
Residue		MeOH solution				
		concd in vacuo				
		extracted three times with 20 ml of EtOAc				
Water solution	EtOAc solution					
		evaporated				
silica gel column chromatography						
Wako C-200 (i.d. 2.5 x 10 cm)						
elut		eluted with CH_2CI_2 - MeOH (100:5)				
		HPLC YMC-pack A323 S-5 120A ODS				
		eluted with $CH_3CN - H_2O$ (90:10)				
		DO-100 active substance (15 mg)				

Instation managements af a DO 100 meduat

Fig. 2. Proton coordination of the sugar derived from difference-NOE experiments.

The arrows indicate the proton-proton NOE networks.

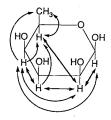
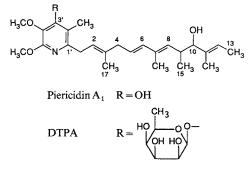



Fig. 3. The structures of DTPA and piericidin A_1 .

piericidins^{5,6)}.

As shown in Table 1, DTPA inhibited the proliferation of murine Colon 26 cells ten times more effectively than that of murine leukemia L1210 cells (IC₅₀: 0.81 µg/ml vs 7.91 µg/ml). Known antitumor agents inhibited the proliferation of L1210 cells more effectively than that of Colon 26 cells. In a mouse model, an intraperitoneal injection with 0.625 mg/kg of DTPA also resulted in the suppression of the growth of Colon 26 tumor (T/C=21.8 %) implanted subcutaneously in syngeneic CDF₁ mice.

Active substances suppressing solid tumors are urgently required for cancer chemotherapy. A further study for a suitable schedule of DTPA therapy is under way using a murine tumor model.

> HIROAKI IWASAKI Kei-ichi Kamisango Hitoshi Kuboniwa Hiroshi Sasaki Shuzo Matsubara

Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co., LTD., 1-135 Komakado, Gotemba, Shizuoka 412, Japan

Table	1.	Proliferation i	nhibition	of tumor	cells	by DTPA
and	kno	wn antitumor	agents.			

Compound	IC ₅₀ (µ	-Inhibition		
Compound	Colon 26 (a)	L1210 (b)	rate (b/a)	
DTPA	0.81	7.91	9.77	
5-Fluorouracil	0.26	0.29	1.11	
Mitomycin C	0.03	0.02	0.67	
Doxorubicin	0.08	0.02	0.25	
Cisplatin	0.61	0.09	0.15	
Cytosine arabinoside	2.37	0.07	0.03	
Nimustin hydrochloride	> 20.00	6.73	< 0.34	
Etoposide (VP-16)	>10.00	0.33	< 0.03	

^a Two hundred μ l of serial dilutions of each drug were incubated with 5×10^3 tumor cells for 3 days. Cytotoxicity of drugs was assayed by the MTT method⁷ and expressed as IC₅₀.

(Received November 10, 1990)

References

- YANAGITA, T.; T. ICHIKAWA, T. TSUJI, Y. KAMATA, K. ITO & M. SASAKI: Two trophic groups of bacteria, oligotrophs and eutrophs: Their distributions in fresh and sea water areas in the central northern Japan. J. Gen. Appl. Microbiol. 24: 59 ~ 88, 1978
- ISHIDA, Y. & H. KADOTA: Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb. Ecol. 7: 123 ~ 130, 1981
- 3) YOSHIDA, S.; K. YONEYAMA, S. SHIRAISHI, A. WATANABE & N. TAKAHASHI: Chemical structures of new piericidins produced by *Streptomyces pactum*. Agric. Biol. Chem. 41: 855~862, 1977
- MATSUMOTO, M.; K. MOGI, K. NAGAOKA, S. ISHIZEKI, R. KAWAHARA & T. NAKASHIMA: New piericidin glucosides, glucopiericidins A and B. J. Antibiotics 40: 149~156, 1987
- MORI, H.; S. FUNAYAMA, Y. SUDO, K. KOMIYAMA & S. ÖMURA: A new antibiotic, 13-hydroxyglucopiericidin A. Isolation, structure elucidation and biological characteristics. J. Antibiotics 43: 1329~ 1331, 1990
- 6) KIMURA, K.; S. NAKAYAMA, N. NAKAJIMA, M. YOSHIHAMA, N. MIYATA & G. KAWANISHI: A new piericidin rhamnoside, 3'-rhamnopiericidin A₁. J. Antibiotics 43: 1341~1343, 1990
- 7) CARMICHAEL, J.; J. B. MITCHELL, W. G. DEGRAFF, J. GAMSON, A. F. GAZDAR, B. E. JOHNSON, E. GLASTEIN & J. D. MINNA: Chemosensitivity testing of human lung cancer cell lines using the MTT assay. Br. J. Cancer 57: 540~547, 1988